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SUMMARY

The status of an effort to increase the efficiency of calculating
transient temperature fields in complex aerospace vehicle structures is
described. The advantages and disadvantages of explicit and implicit
algorithms are discussed. Explicit solution techniques require minimal
computation per time step but have stability-limited step sizes. Implicit
techniques permit larger step sizes because of better stability but
require more computation per time step. A promisirg set of implicit
alagorithms, known as the GEAR package is described. Four test problems,
used for evaluating and comparing varicus algorithms, have been selected
and finite element models of the confiqurations are described. These
problems include a Space Shuttle frame component, an insulated cylinder, a
metallic panel for a thermal protection system and a model of the Space
Shuttle Orbiter wing. Calculations were carried out using the SPAR finite
alement program, the MITAS Tumped parameter program and a special purpose
finite element program incorporating the GEAR algorithms.

Results generally indicate a preference for implicit over explicit
algorithms for solution of transient structural heat transfer problems
whon the governing equations are "stiff". Stiff equations are typical of
many practical problems such as insulated metal structures and are
characterized by widely differing time constants in the thermal response.
In cases where implicit algorithms are appropriate, the GEAR algorithms
offer high potential for providing increased computational efficiencv. In
some cases careful attention to modeling detail such as avoiding thin or
short high-conducting elements can reduce the stiffness to the extent that
ex.1icit methods become advantageous.

INTRODUCTION

An effort is in progress at the NASA Langley Research Center to
improve capability to predict and optimize the thermal-structural bshavior
o: aerospace vehicle structures. The focus of this activity is on space
transportation vehicles presently typified by the Space Shuttle Orbiter.

A principal task is to significantly reduce the computing effort for
obtaining transient temperature fields in the structure. This task is to
be accomplished by incorporating the best state-of-the-art solution
algorithms into general-purpose thermal analysis computer programs.
Current activity is focused on evaluation and comparison of explicit and
implicit solution algorithms.

In reviewing current literature, a preference is evident amon.:
numerical analysis researchers for implicit algorithms for solution of
st1ff* sets of ordinary differential equations (ODE's). Many engineering
analysts, however, prefer to use the longer-established explicit

*Stiff sets of ordinary differential equations are characterized by
snlutions with widely varying time-constants. The typical case is when
the solution-to the homogeneous problem has very small time constants
compared to those of the forcing function (ref. 1).



algorithms. A partial explanation for this dichotomy is that the full
power cf the implicit approach has not been transferred from researchers
£n engineering analysts.

In the explicit algorithms the set of temperatures at a given time is
expressed as an explicit function of the set of previous temperatures in
the structure. The time step (the difference between the present and
previous times) is limited (often severely) in order that the technique be
stable. In the implicit algorithms the present temperatures in the
structure are interrelated through a set of alaebraic equations (usually
nonlinear) which are often costly to solve. For the commonly-used
imolicit algorithms there is no stability-imposed limitation on step
siza. The step size is limited by solution accuracy only, so that
implicit algorithms can, in generai, use much larger time steps than
exvlicit algorithms. Because a single explicit time step is
computationally faster than a single implicit time step the key to the
acdvantageous use of implicit algorithms is to use the largest possible
time step size.

As presently implemented in thermal analysis computer programs,
implicit algorithms generally require a user-specified fixed time step
(refs. 2 to 6). The step size must be determined by trial, insight or
other means. Because the user is usually unable to choose the largest
possible time step at each time point the implicit algorithm is not used
to maximum advantage. Furthermore, the solution must be repeated with a
smaller time step in order to assess the error in the solution. The lack
nt automatic selection of step size based on a prescribed error tolerance
has certainly delayed the full develcpment cf the potential of implicit
snlution algorithms.

The strateqy being advocated in the snlution of large problems by
implicit methods is to have several alternate “mplicit algorithms of
varving order available and to automatizally select both the largest
nossible time step ana the apprepriate algorithm throughout the solution
nrecess (refs. 6,7). A promising set of algorithms, developed for the
purpose of implementing the aforementioned strategy, is denoted the GEAR
altgorithms (refs. 7 to 10). Good ‘performance of the GEAR algorithms has
hean demonstrated in applications to problems in structural dynamics,
atmospheric pollution and hydrodvnamics (ref. 7). These successes suggest
the apnlication of the GEAR technicues to transient thermal analysis.

The purpose of the present paper is to describe the current status of
ongoing evaluations and demonstrations of the use of explicit and implicit
algorithms for transient thermal analysis of heated structures using the
finite element method. A Shuttle frame test article, an insulated
cylinder, a metallic multiwall thermal protection system panel, and a
mod21 of the Shuttle Orbiter wing are analyzed using the SPAR thermal
analysis computer code (ref. 2). Comparisons between implicit and
explicit algorithms are presented. The parformance of the GEAR algorithms
is evaluated for the cylinder problem. For benchmark checks the cylinder
is also analyzed with the MITAS lumped parameter program (ref. 11). It is
a characteristic of thermal analysis by finite element and lumped
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parameter techniques that careful modeling can minimize stiffness in a
problem and conversely, improper mndeling can increase the stiffness.
Since stiffness is one of the key factors in the performance of implicit
and explicit algorithms, evaluations of these algorithms cannot be
entirely separated from modeling considerations. Consequently the paper
includes a limited study of the effects of modeling on the performance of
the explicit and implicit algorithms.

LIST OF SYMBOLS

C capacitance matrix

DT time step size

en  error in numerical solution of the temperature at time ty,
truncation error of numerical integration method
right hand side of equation for transient problem, see Eq. (1)
right hand side of simplified transient problem, T = G(T,t) = C-IF

n time step

Jacobian of system of differential equations = 9F/3T

conductivity matrix

length of a rod element

thermal load vector

order of a multistep method

residual of the system of equations generated by the implicit method

time

n-th time point

vector of temperatures

temperature at node i

initial temperature at node

thermal diffusivity

coefficient in Adams-Moulton method, Eq. (20)

coefficient in backward difference method, Eq. (19)
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Superscripts

i iteration number
A dot represents differentiation with respect to time

NATURE OF ALGORITHMS USED IN TRANSIENT THERMAL ANALYSIS

A transient heat transfer problem when discretized by a finite
element, finite difference or similar technique, is governed by the
following system of equations

CT = Q(T,t) -K(T,t)T = F(T,t) T(0) given (1)
where F is generally a nonlinear function. It is usually impractical to
obtain an analytical solution to Eq. (1) so that numerical integration

methods are used. These methods obtain an approximation to the solugion
at discrete time points t;, tp, t3, . . . and are dencted time marching
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schemes because the solution at a given time is obtained in terms of tae
values at previous times. The simplest numerical integration technique is
the Euler rmethod which uses the first two terms in a Taylor series tg
predict T a". time tp4 as

T(taey) = Tity) + by T (t,)

(2)
= T(t,) + hy C1 F(T(E,),t,)

where
hn = tn+1 -tn (3)

Euler's method is an example of an explicit integration technique,
so-named because T(tn+1) is given explicitly in terms of known

quantities. Another approach to the numerical integration of equz2tion (1)
is the backward difference method which is an example of an implicit
method. In this approach

T(tpsy) = Tlty) + by T(tnsy)
= T(ty) + hColF(T(tne1)s tnep)

Equation (4) is a system of implicit equations for T(tp+y), which is
generally nonlinear and thus difficult to solve. The explicit algorithm
is therefore easier to implement* and in general would be the best choice
except for its stability properties. The term stability refers to the
error propagation from one time step to the next. A method is unstable
vhen an error in the solution at a time point is magnified at subsequent
time points.

(4)

To illustrate the problem of stability associated with explicit
solution methods, it is instructive to examine the following simple
example. Figure 1 shows a 2-node finite element where the temperature of
node 2 is given as At. Based on a linear temperature variation and lumped
canacitances, the differential equation for the temperature at node 1 is

I 2
Tl = L—% (TZ - Tl) (5)

where a is the diffusivity of the material and L is the length of the
element. The exact solution to Eq. (5) is

2t /1.2 i
Ty = -A%/2a + At + (T, + AL2/2a)e”20t/t (6)

*The advantage of the explicit algorithm depends in part on the form of
the capacitance matrix C. Usually, the capacitances are lumped and C is
diagonal. In cases where C is not diagonal each step of the explicit
method is much more costly.



which is composed of terms (first two terms) that vary slowly with respect
to other terms (last).

To study the stability of the explicit Euler method for this problem,

assume an error e, in Ty(t,) and calculate the error e,+ in Ty (tp+1) due
to that error. From eqs. ?2) and (5)

Ti(tpe1) = Tylty) + hy Ty(ty)

2ah
= Ty(ty) [1-2hpa/L2] + (Tf'l) Ta(tn) (7)

From Eq. (7)

ens] = (1-2hya/L2)e, (8)
For stability (that is, no error magnification) it is required that

lensl € lepl (9)
or

hy < L%/a (10)

For short or thin elements having high diffusivity, eq. (1C) imposes a
severe limit on the time step which can be taken by the explicj t
algorithm. For example, a 5mm thick aluminum element (a=7x10-°mZ/s)
requires

h < (5 x 1073)2/7 x 10-5 = 0.36 sec

which is a very small time step when used for temperature histories of
several hours.

By contrast, the implicit integration method does not have a
stability-limited time step. If the backward difference method,(eq. (4)),
is used for eq. (5) one obtains

Ti(tns1) = T1(ty) +hy Ty (tep)

= Ty(tn) + hy (20/L2)(T(tne1) - T1(taer)) b
From Eq. (11),
Ti(tps1) = [T1(ty) + Ny (20/L2)Tp(tps1)1/(1 + 2hpa/L2) (12) .
so that if the error in Ty (t,) is e,, the error in T{(tp41) due to e, is
ens1 = €/ (1 + 2hpa/L2) (13)



From Eq. (13) it is clear that for any value of h;, e +1 Will be smaller
than ep.

Another source of error, denoted the truncation error ey, is due to
using only the first two terms in the Taylor series for estimating
T(tp+y)e It is easily shown that this part of the error for both the
Euler method and the backward difference method is

ey = +1/2 hy2 T(t,) (14)

where the minus sign applies for Euler's method and the plus for the
backward difference method. Since the exact solution to the example
problem is known, the truncation error may be calculated exactly. Eqgs.
(6) and (14) lead to

- 2
et = 222214 (Tg + W2, 2a)e72/L (15)

For small values of t the exponential is close to unity so that the
following condition must be satisfied to avoid large errors.

2.2h 2% <« 1 (16)
or
hy << L%a (17)

For large values of t, the exponential becomes very small and h can be
large without causing a large e¢. In terms of Figure 1, small steps are
required early in the temperature history but not later in the history.
These conditions immediately suggest the usefulness of variable time steps
which are automatically selected according to the local behavior of the
temperature response.

This example problem exhibits the essential features of most
transient conduction heat transfer problems with respect to the
integration techniques, namely:

(1) The thermal response may be divided into regions of slowly and
rapidly varying temperatures. Steep transients accompany initial
conditions or sudden changes in the heat load.

(2) The rapidity of variation of the transienE portion of the temp2rature
history is proportional to the quantity L%/a. During such a
transient, time steps much smaller than Lz/a must be taken no matter
what type of integration technique is used.

(3) During a period of slowly-varying temperatures, large time steps may
be taken by implicit integration techniques but_explicit techniques
must still use time steps which are less than L?/ae

In mathematical terms, the sample problem is an example of a “stiff"
problem. A stiff problem is one whose solution includes a slowly varying

6



function of time plus a transient function which changes rapidly. When
explicit methods are applied to stiff problems, very small integration
time steps must be taken even though the solution changes very slowly.
For this reason stiff problems are usually best solved by implicit
methods. The effort involved in solving a system such as Eq. (4) is
usually cost-effective if a small number of large time steps are used.

The Euler method and the backward difference methods are presented as
representatives of a large class of explicit and implicit techniques,
respectively. Higher-order methods typically use more previous
informaticn to predict the temperature at the current time and have
truncation errors which are proportional to higher powers of hp. Such
techniques are called multistep methods and their order is one Iess than
the power of h, in the truncation error expression. The stability
properties of mu1t1step methods are similar to those of the Euler and
backward difference methgds. Most explicit methods are unstable for time
steps much larger than L4/a. Accordingly, thermal analysis computer
programs generally select the explicit time step automatically based on
the stability requirement. For implicit methods, accuracy primarily
determines the step size, although stability may be a factor for highly
nonlinear problems. Even for linear problems some implicit algorithms
produce bounded oscillations if the time step size is too large (ref.
14). 0Often, low-order implicit algorithms are less susceptible to these
oscillations. It is concluded that a good package for integrating stiff
systems of ordinary differential equations would be one which uses
implicit methods and automatically selects the order and the step size
based on desired accuracy. One package denoted the GEAR algorithms has
these features and is discussed next.

THE GEAR ALGORITHMS

Several software packages based on the work of Gear have been
developed for general use (ref. 7). The package most appropriate for
application to finite element thermal analysis is denoted GEARIB*. This
package is intended to solve systems of ordinary differential equations of
the form

C(T,t) T = F(T,t) (18)

The package employs two classes of implicit multistep

methods, Adams-Moulton and backward differences. For nonstiff equations
the Adams-Moulton method of order one through twelve is used. This method
has the general form

T(tpeg) = T(ty) + My f‘b By T(tpegos) (19)
!:

*An earlier and ciosely related software gackage denoted GEARB was
developed to solxe equations of the form T = G(T,t). In the present
application G=C~iF. At this writing GEARIB has not been implemented and
calculations have been performed using GEARB.
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where q is the order. For stiff equations the backward difference
algorithms of orders one through five are used. These algorithms have the
general form

. q
T(tn-l-l) = hnso T(tn+1) + z;ﬂ aj T(tn+1-i) (20)

The coefficients a; and 3; are given in reference 10. The user
selects the class of methods (Adams-Moulton or backward differences), and
as described in reference 7 GEARIB automatically selects the appropriate
time step and the order based on user specified error tolerance. It may
seem surprising that implicit methods are used for both stiff and nonstiff
problems. However, for nonstiff problems the et of algebraic equations
associated with each time step may be solved very effectively and implicit
methods often have smaller truncation errors than explicit methods of the
same order.

Use of the GEAR algorithms is explained by the backward difference
algorithm (of order one). Applied to Eq. (18), eq (20) gives

R = C[T(tn+1) - T(tn)] - hn F(T(tn'!-l)s tn+1) =0 (21)

This system of nonlinear algebraic equations is solved by the
modified Newton's method. That is

1
T (tae1) = THtaa) - BR1 R (22)
where
R o=y

J =dF/aT is the Jacobian of the system at a previous time point and may
be calculated according to one of four options specified by the user:

Option 0: The Jacobian is assumed to be the unit matrix. In this
case the iteration represented by eq. (22) is very
efficient to implement. However, it can be shown that it
converges only for very small values of h,. The upper
Timit on h, is of the same order as that requ1red for
stabxllty of an explicit method. As a result option O is
similar in cost and reguired step size to an explicit
method.

Option 1: The Jacobian is calculated in a subroutine by the user.
This is the recommended option for stiff problems.

Option 2: The same as option 1 except that the Jacobian is
calculated by finite differences. This option is
* intended for users who do not wish to supply a
subroutine to calculate the Jacobian.
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Option 3: The Jacobian is assumed to be diagonal and is calculated
by finite differences in GEAR. This option is more
costly per iteration than option 0 and more efficient
than option 1 because 3R/aT is diagonal. Its
convergence properties are aiso in between options 0 and

For options 1, 2 and 3 the Jacobian is recalculated whenever the iterative
solution of eq. (21) requires more than three iterations. The
Adams-Moulton method has better accuracy but poorer stability than the
backward difference method. Therefore for the stiffest problems backward
differences with option 1 is generally recommended and for nonstiff
problems the Adams-Moulton method with option 0 is recommended(ref. 7).

In this paper all applications of the GEAR algorithms use the backward
difference method (eq. 20).

DESCRIPTION OF TEST PROBLEMS AND RESULTS
Insulated Shuttle Test Frame

The first test problem used for algorithm evaluation is a Shuttle
Orbiter frame analyzed and tested under transient heating as described in
reference 12. The configuration shown in figure 2 consists of an aluminum
frame surrounded by insulation. The principal purpose of the study of the
configuration as discussed in reference 12, was to evaluate the thermal
performance of the insulation during a simulated Shuttle flight. A
secondary purpose was to evaluatc the adequacy of thermal analysis
procedures by analytical and test comparisons.

The lumped parameter model received from the author of reference 12
consists of a two- Jimensional section of a symmetric half of the structure
and contains 118 nodes (see figure 2b). The unknown temperatures are
Tocated at the centroids of the lumps. The lumped parameter model was
converted to a finite element model for analysis using the SPAR program
(ref. 2). The corresponding SPAR finite element model contains 149 grid
points located at the ends or corners of the elements. The model contains
148 elements including one-dimensional elements which account for
conduction in the aluminum structure and rediation across the air gap and
two-dimensional elements which model conducticn in the insulation and
across the gap. The difference in numbers of elements and grid points
is due to the different modeling approaches of the two methods.

Minor modifications were made to the finite element model following
the conversion. These consisted of eliminating or consolidating some
extremely thin or short finite elements in the aluminum structure in order
to reduce the stiffness of the equations and to increase the allowable
time step for the explicit solution algorithm. The properties of the
aluminum structure are functions of temperature and the properties of the
insulation are functions of temperature and pressure. Material properties
are updated every 50 seconds. The pressure-dependence is treated in SPAR
as time dependence since the pressure-vs-time variation is known from the
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trajectory data for the simulated flight conditions. The applied heating
is sgecified by tabulations of temperatures at the outer surface of the
insulation.

The temperature history for the frame was co™ <ing the SPAR
explicit (Euler), and implicit techniques - (Cr¢ * .tichc » and backward
differences). Comparisons of solution times are .iver in ble 1. The
explicit procedure using a time step of 0.16 s required 513 s of CPU*
time. This time step was controlled by conduction chrough most of the
aluminum elements along the center and front of the fra-e.

Solution time using the Crank-Nicholson algorithm varied from 380 s
to 38 s as the time step was varied between 1.0 and 50 sec. The solution
times for backward differences were close to those of Crank-Nicholson. As
indicated in Table 1(b), there is very 1ittle loss of accuracy in either
the structure or insulation temperatures with increased time step size.
The conclusion is that there is over an order of magnitude difference in
solution time between explicit and implicit solution techniques for the
frame problem as wodelled.

T = accuracy of the solutions by the various techniques is further
assessed. Figure 3 contains temperature histories at a point in the outer
layer of the aluminum structure corresponding to node 309 (see fig. 2b).
The solid 1ine in figure 3 represents the applied temperatures at the
outer surface of the insulation (node 29). The dotted Tine shows
temperatures obtained by the SPAR analysis. The SPAR temperatures are
plotted as a single curve since there is little difference between the
results. The dashed-dot line shows analytical results from the lumped
parameter analysis of reference 12 which are also in close agreement with
the SPAR temperatures. The circular symbols represent test data from
reference 12. The closeness of all the results indicates that the models
are adequate to simulate the temperature history in the test article.

Insulated Cylinder

Model Description.- For the next test problem, a configuration was sought
which was larger (in terms of number of unkrown temperatures) than the
Shuttle frame and exhibited some of the characteristics of an insulated
airframe structure. Also, a simple structure was sought so that a finite
element model! could be easily generated in a stand-alone program in which
the GEARB algorithms could be incorporated and tested. These
considerations led to the insulated aluminum cylindrical shell depicted in
figure 4. The cylinder is 18m (720 in.) in length and 4.5m (180 in.) in
diameter. The aluminum is 0.25cm (0.1 in.) thick and the insulation is
5.0 cm (2.0 in) thick. The outer surface of the insulation is heated over
a region which consists of one-third the length and half the
circumference. The finite element model consists of a symmetric half of
the cylinder and ic composed of simple solid elements (K81 elements in
SPAR). There are 39 elements along the cylinder length, 4 in the

*A1l times are given for the Langley Research Center CYBER 173 computer
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circumferential direction and 3 through the depth (2 elements in the

insu ation and one in the structure). Additionally, the outer surface of
the insulation has quadrilateral elements (K41) which receive the heat
load and quadrilateral radiation elements (R41) which radiate to space.
As a result the model contains 800 grid points (hence unknown
temperatures) and 650 elements. It is recognized that some features of
the model are non optimum. For example modeling the thin aluminum layer
with K81 elemen’s and usina large high-aspect-ratio elements are not
considered good modeling practices. The effects of chang’ng the model to
assess these and other shortcomings are discussed later in the paper. The
time-dependence of the heat load on the cylinder is plotted in figure 5.
For all calculations material properti.; of the metal and insulation are
temperature-dependent and are given in table 2. Material properties are
updated every 200 seconds of the temperature history.

Application of GEARB. -~ The GEARB algorithms were applied to this example
using a special purpose finite clement program which generates a finite
clement model of a cylinder using K81, K41, and R4l elements. The program
contains the GEARB package and aenerates the matrix J and the vector G
(see footnote, p. 7§. Only the backward difference option is used because
it is recommended for stiff sets of equations. The first set of
calculations concerns selecting the best Jacobian opticn. Temperature
histories in the cylinder were calculated for 2000 s using each of the
four options with a specified relative error limit of 0.001. Solution
times, integration step sizes, and the number of Jacobian evaluations are
given in table 3(a). As expected for this stiff problem, the only useful
ontions are the user-supplied Jacobian (Option 1) art he finite
difference Jacobian (Option 2). The degree of st ;s is indicated by
the small step size (0.045 s) required by the ex| .~like option {(Option
0). In contrast, options 1 and 2 permit time s..p. of up to 93.4 s and
average 25 s.

To further investigate the ‘acobian options, the probiem was made
less stiff by increasing the metai thickness to 2.54cm (1.0 in) and the
calculations were repeated. Th2 results in Table 3{b) show that options O
and 3 are acceptable (in fact option 3 is better than uption 2 for this
case) but are not as effective as option 1. The results indicated in
table 3 suggest that as less stiff problems are considered, options 0 and
3 will become more effective. This is an important trend because use of
options 0 and 3 requires less core storage than options 1 and 2 since a
diegonal Jacobian is used in the latter options.

To assess the effect of accuracy requirements on computation time and
results, the thin cylinder was rcanalyzed using option 1 and a relative
accuracy of 0.01. The CPU time was reduced from 450 s to 263 s, the
average time step increased to 69 s and the number of Jacobian evaluations
reduced to 9. The largest difference in calculated temperitures resulting
from the reiaxed error tolerance was only 14K (out of 560K) for a point in
the insulation.

Application of SPAR.- The temperature history of the cylinder for 2000 s
was computed with SPAR using the explicit Euler algorithm as well as the
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Crank-Nicholson and backward difference implicit algorithms. Comparisons
of solution times for the methods are shown in table 4. There was
essentially no difference between solution times for Crank-Nichnlson and
backward differences and results are presented only for the former

method. The explicit algorithm estimated a stability limit of 0.12 s,
howaver, use of this time step gave an unstable soiution. A time step ..
0.06 s was used successfully and the solution time was 12300 seconds. The
time step was controlled by conductign through the thin aluminum
structural elements. The value of L¢/a based on a value of L of 0.254 cm
(0.1 in.) was 0.103 s. This example illustrates a case of a stiff problem
made more stiff by a model which causes the explicit algorithm to use a
small time step tr compute the negligible temperature gradient through the
aluminum skin. - 2 implicit algorithm was used with time steps of 5, 10
and 25 s and required solution times of 782, 569 and 507 s respectively.
For a time step of 50 s the implicit method failed to converge. The
relatively small decrease in solution time between time steps of 10 s and
25 s is noted and is due to two reasons. First, a major portion of the
time is used in SPAR to regenerate the fiiite element matrices when
material properties are temperature-dependent (see next section). Second,
a larger time step often increases the number of iterations required to
solve the implicit system (equation 21).

Comparison between GEARB and Implicit Algorithms in SPAR. - Experience
vith the GEARB algorithms and those presently in SPAP plus comparisons of
snlution times such as those in Table 4 suggests the rollowing advantages
of the GEARB methods:

(1) the use of accuracy-controlied time steps frees the user from the
n2ed to determine time steps for achieving desired accuracy;

(ii) The use of variable time steps permits much larger average time
steps to be used; -

(111) GEARB employs an efficient predictor (the algorithm that supplies
the first guess to the solution of eq. 21) and therefore can save
time by employing larger time steps.

To gain aaditional insight into the benefits of variable time steps
and order in GEARB, the cylinder was reanalyzed with the heat lcad of
figure 5 replaced by a step function having the same peak value &s figure
5. This load results in a rapid and highly nonlinear response during the
first part cof the temperature history. Temperature histcries were
computed using GEARB in the special purpose program and Crank-Nichoison in
SPIR (with a time step of 25 s). Material properties were updated every
50 seconds. The time step used in GEARB varied between 3.5 s aad 308 s
with an average time step of 47 s. The order of the algurithms varied
hetween 3 and 1. The smaller time steps and higher orders were used early
in the time history. Solution time for GEARB was 368 s. compared to
1014 s for Crank-Nicholson. Additionally there was an error of 10K (out
0f 750K) in the Crank-Nicholson result at 50 s.
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Effect of Modeling on Algorithm Performance. - The thickness of the
cylinder used in the calculations is deliberately chosen to be quite small
(consistent with the Shuttle frame for exampla). For this thickness there
is no significant temperature gradient through the aluminum and there is
no need to use elements (e.g. K8l1) which account for the gradient.
Additionally, it is possible to replace the three-dimensional K81 elements
in the insulation with an assemblage of cne dimensional conductors through
the insulation thickness. Two models that reflect these ideas were
generated. The first model (model II) replaced the 3-dimensional aluminum
elements with 2 dimensional (K41) elements. The second model (model III)
used the two-dimensional aluminum elements and one-dimensional insulation
elements. Both models have a finer (3 elements instead of 2)
representation through the insulation so as to preserve the total number
of grid points at 800. The solution times with these models are given in
the third and fourth columns of Table 5. They indicate that the changes
in the model which reduce the stiffness enable the explicit algorithms to
execute faster than the implicit algorithms. As noted in the table, the
implicit algorithms in SPAR for models II and III did not converge for a
time step of 25 s and for mode® I, the solution time was greater for 25 s
than for 17 s. These are additional indications that the predictor used
in conjunction with the iterative solution of eq.(21) may be deficient.

Another aspect of the effect of mcdeling is comparison of results
from finite element and lumped parameter models. For this purpose, the
MITAS lumped parameter computer program (ref. 11) was applied to the
analysis of the cylinder. The finite element model I was converted to a
Tumped parameter mode! by use of the CINGEN program (ref. 13).* The
resulting Tumped parameter model cortaired 625 nodes as compared to 800
grid points in the finite element model. Recall the unknown MITAS
temperatures are located only at the centroids of each Tump or element.
Temperature histories were cbtained using MITAS with the explicit (forward
differences) and implicit (Crank-Nicholson and backward d<fferences)
methods.

MITAS computation times are shown in the last column of table 5.
Because none of the SPAR models is eguivalent to the MITAS model in terms
of the number of unknown temperature or nodal connections, no direct
comparison of MITAS and SPAR solution times are appropriate. However,
some trends evident in table 5 are noted. The MITAS model is not
particularly stiff as evidenced by th2 large time step used in the
explicit solution technique. Th2 modified SPAR models which begin to
resemble the MITAS model in certain respects are also less stiff and favor
explicit algorithms. Of particular importance is the decrease in solution
time of each program due to increased step size. Specifically note in
t:ble 5 the large improvement in solution time between a time step of 10
and 25 seconds in MITAS compared to the much smaller decrease in SPAR.

*CINGEN did not properly account for two-material conductors. These had
tc be input manually.
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This is primarily due to the fact that SPAR regenerates the element
conductivity matrices each time the temperature-dependent conductivities
are updated. This results in high computation time especially for the
solid (K81) elements. An alternative which can be easily implemented for
isotropic elements (and is equivalent to what is done in MITAS) is to
generate the matrices once and multiply each matrix by the latest updated
conductivity. Presently the time used for the matrix regeneration in SPAR
tends to mask some of the benefits of using implicit methods. Namely for
larger time steps, the matrix regeneration time becomes a predominant
portion of the total solution time.

Figqure 6 contains temperature histories of a point in the cylinder
computed by the implicit and explicit techniques for all three SPAR
models, plus GEARB and MITAS. Model II is considered to be best of the
models being compared and thus the temperatures represented by the dotted
line are thought to be the most accurate. These results are bracketed by
rosults from model I and MITAS (from above) and by model II (from below).
There are negligible differences between temperatures from the implicit
and explicit solutions for any given model. Also GEARB produces the same
results as SPAR for model I. Results from model II and III are different
from that of model I because of the extra layer of elements through the
insulation. The MITAS temperature history agrees well with that of model
T (on which the MITAS model is based) except for some differences
beginning at 1400 s.

Multiwall Thermal Protection System Panel

The next example problem is one which grew out of a study of the
thermal performance of a titanium multiwall thermal protection system
(TPS) panel which is under study for future use on space transportation
systems (ref. 15). The configuration as depicted in figure 7(a), consists
of alternating layers of flat and dimpled sheets fused at the crests to
form 2 sandwich. The representation of a typical dimpled sheet is shown
in fiqure 7(b). For the purpose of this analysis, it is assumed that the
heat load does not vary in directions parallel to the plane of the fanel.
This assumption in addition to the regular geometry of the structure leads
to the modeling simplification whorein only a triangular prismatic section
of the panel needs to be modeled (fig 7(a)). The intersection of this
prism with a typical dimpled layer is indicated by the shaded triangie in
fiqure 7(b).

The finite element model shown in figure 8 contains 333 grid points
located on nine titanium sheets (5 horizontal and 4 inclined). The model
contains 288 triangular and quadrilateral metal conduction elements, 264
solid air conduction elements which account for gas conduction between the
tayers and 544 triangular and quadrilatral radiation elements which
account for radiation heat transfer between adjacent horizontal and
inclined sheets, Thermal properties of titanium and air are functions of
temperature. Radiation exchance (view) factors were computed and supplied
to 5PAR using the TRASYS II computer program (ref. 16).
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The temperature history of the panel in response to an imposed
transient temperature at the outer surface of the panel was computed for
2000 s. Results were obtained with SPAR using explicit, Crank-Nicholson
and backward difference algorithms. Solution-time comparisons are
presented in table 6. The explicit algorithm required a time step of
0.03 s. This time step was dictated by conduction of heat through the
short heat paths between the verticies of adjacent triangular layers and
indicates that this is an extremely stiff problem. Required solution time
for the explicit algorithm was estimated to be 42000 s.*

The Crank-Nicholson solution was carried out using time steps of 1
and 5 s which led to solution times of 1811 and 675 s respectively.
Backward differences was used with the same time steps and had solution
times of 1772 and 703 s respectively. This example shows most
dramatically the potential advantages of using implicit algorithms for
tharmal analysis of stiff problems. A plot of typical temperature
histories for a point midway through the panel and the primary structure
are shown in figure 9 along with the applied outer surface temperature.
The results were obtained by the implicit algorithm with a time step of 5
s and are identical to results using a time step of 1 s.

Shuttle Wing

The last example problem is a model of the Space Shuttle Orbiter
wing. The model shown in figure 10 is based on a coarse (418 grid point)
model and augmented by insulation attached to the upper and lower
surfaces. The structure is modeled by rod, triangular and quadrilateral
elements (K21,K31,K41 in SPAR terminology). The external insulation on
each surface is modeled by five layers of solid triangular prismatic (K61)
elements. The complete model contains 2508 grid points, 1400 one-and
two-dimensional elements in the structure and 2700 solid elements in the
insulation. Thermal properties of the aluminum structure are
temperature-dependenc; thermal properties of the insulation are
temperature and time-dependent.

For the purpose of this analysis, the applied heating on the wing is
represented by a time-dependent tcmperature applied to the external
surface of the insulation on the under side of the wing. The shape of
this curve shown as the solid line ir figure 11 is roughly indicative of
atmospheric reentry heating. The temperature history of the wing for 4500
seconds was computed using the SPAR explicit algorithm.
Temperature-dependent properties were updated every 100 seconds of the
temperature history. For this problem the explicit algorithm was able to
use a large time step of 100 s. {The 100 s time step was dictated by the
need to periodically update temperature-dependent material properties and
not by stability requirements.) The time step is due to the coarse
modeling of the structure which did not inciude the thin, high-conducting
or radiating elaments present in the previous models. Figure 11 shows the

*To conserve computer resources the solution was terminated after 400 s of
the temperature history for which 8400 CPU s were required.

15



temperature histories of a point on the structure and a point in the
insulation 1/5 of the distance through the insulation at a typical cross
section through the wing. The solution time for the explicit algorithm
was 8600 s. Next the implicit (Crank-Nicholson) solution algorithm was
applied to the wing using a step size of 100 s. Over 5000 seconds of CPU
time were used without completing the first time step. It was determined
that the excessive slowness was due to the poor banding of the matrix
equations which are solved as part of the implicit technique (represented
by eq. 21). The grid point decomposition sequence was changed in such a
way as to greatly reduce the band width. The implicit solution was
repe-ted with the result that three time steps were completed using 1100
secunds of CPU time. The solution was terminated after this point to
conserve computer resources. Extrapoiating these values gives an estimate
of 16500 CPU seconds to complete the 4500-second temperature history of
the wing. Thus the implicit algorithn requires about twice the solution
time as the explicit algorithm. This wing problem is a case where because
of low stiffness the explicit algorithm is the best choice. It also shows
that when using implicit methods, the analyst should be aware of the
importance of proper banding of the matrices and careful grid point
numbaring.

Choice of Explicit or Implicit Algorithms

Two main factors determine whether explicit or implicit algorithms
are more effective for solving a structural heat transfer problem. These
are (1) stiffness of the system and (2) the connectivity of the model.
These are now discussed in detail.

Stiffness of the ODE system. - The stiffer the ODE system is, the more
likely it is that the implicit algorit* s will be more efficient than
exnlicit algorithms. In many cases ca ful and judicious modeling of the
thermal problem can reduce the stiffness of the resulting system.
Howaver, the use of implicit algorithms can help the analyst avoid the
added effort required for such a judicious and careful modelling.

The st}ffness af the system depends primarily on the smallest time
constant (L¢/a) of the elements. Radiation and convection effects
increase the stiffness of the model bocause they increase the conductance
without affecting the capacitance. The stiffness of the system also
deoends on the applied heat loads. Tha system is stiff if these loads
chenge much mere slowly than the smallest time constant of the model. If
the loads change very rapidly, small time steps are required to follow the
response for both explicit and implicit algorithms. The explicit
algorithms most likely will be more efficient in this case.

Effect of connectivity of the model. - The disadvantage of an implicit
method is associated with the need to soive a (denerally nonlinear) system
of equations such as eq. (21) at every time step. The use of the modified
Mewton method converts this problem to one of solving a series of linear
systems. In SPAR, the linear system is solved by Gaussian elimination and
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in MITAS by an iterative method. When the system of equations is poorly
banded, Gaussian elimination is an ineffective solution method.
Therefore, in SPAR it may be anticipated that the implicit methods become
less attractive for problems which are poorly banded due to poor nodal
numbering, or the inherent properties of the model. Problems with
inter-element radiation, for example, tend to be poorly banded because
non-adjacent grid points are coupled by radiation.

The insulated cylinder problem (mode! I) is used to demonstrate the
effect of banding on the implicit algorithms. The problem was originally
modeled with 3 elements through the thickness, 4 in the circumferential
direction and 39 in the axial direction. This model has 800 nodes with a
band width of 51. The cylinder was remodeled with 9 elements through the
thickness, 7 in the circumferential direction and 9 in the axial
direction. This model also has 800 nodes but the band width is increased
to 182. The solution time using the implicit algorithms for a time step
of 5 seconds was 2670 seconds as compared to 782 seconds for the narrow
band width cylinder (see table 5). This suggests that an implicit scheme
may certainly become less efficient if Gaussian elimination is used as the
solution strategqy and the system is poorly banded.

CONCLUDING REMARKS

This paper discusses the status of an effort to obtain increased
efficiency in calculating transient temperature fields in complex
aerospace vehicle structures. Explicit solution techniques which require
minimal computation per time step and implicit techniques which permit
larger time steps because of better stability are reviewed. A promising
set of implicit solution algorithms, known as the GEARB and GEARIB
packages are described. Four test problems for evaluating the algorithms
have been selected and finite clement models of each one are described.
The problems include a Shuttle frame comnonent, an insulated cylinder, a
metallic panel for a thermal protection system and a model of the Space
Shuttle Orbiter wing. Cailculations were carried out using the SPAR finite
element program, a special purprse finite element program incorporating
the GEARB algorithms, and for checking purposes the MITAS lumped parameter
program.

Results generally indicate that immlicit algorithms are more efficient
than explicit algorithms for solution of transient structural heat
transfer problems when the governing equations are stiff. Stiff equations
are tynical of many practical problems such as insulated metal structures
and are characterized by widely differing time constants and cause
explicit methods to take very small time steps. In those cases where
implicit algorithms are appropriate, the GEARB and GEARIB algorithms offer
high potential for obtaining the increased computationa! efficiency.

Studies were also made of the effect on algorithm performance of

different models of the same cylinder test problem. These studies
revealed that the stiffness of the problem is highly sensitive to modeling

17



details and that careful modeling can reduce the stiffness of the
resulting equations to the extent that explicit methods are advantageous.
Since implicit algorithms are less influenced by stiffness-related
modeling details, use of these algorithms can save the analyst a certain
amount of model refinement effort. Finally, wide-banding of the matrix
equations of the finite element model either due to non-optimal grid-point
numbering or high connectivity (due for example to radiation) may decrease
the advantage of implicit methods.
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Table 1. - Performance of Various Algorithms for Transient Thermal
Analysis of Shuttle Frame

(a) Solution Time Comparison

EXPLICIT IMPLICIT
Euler Crank-Nicholson Backward Difference
Time Step| Solution Time Step| Solution | Time Step Solution
(s) Time (s) (s) Time (s) (s) Time (s)
0.16 513 1 380 1 357
10 65 10 68
25 48 25 49
50 38 50 4]
(b) ffect of Time Step on Accuracy
of Implicit Algorithms
Step Size Temp. of Node 309** at 1200 s Temp. of Node 409** at 1200 s
(s) K °F K F
1.0 436.2 325.2 528.4 491.1
10.0 436.2 225.1 528.4 491.0
25.0 436.1 325.0 528.3 491.0
50.0 437.2 437.0 528.6 491.5
0.16* 437.8 322.0 529.0 492.2

* Explicit Algorithm
** See figure 2(b)
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Table 2. - Material Properties for Insulated Cylinder
(a) Insulation: p = 160 kg/m3 (.00582 lbm/in3)

T C k
K R J/kg-°C Btu/1bm=°R w/m=-°C Btu/in-s-°R
456 360 523 0.125 .0381 5.1x10-7
622 660 .0546 7.3
733 860 L0711 9,5
844 1060 .0898 1.2x10-6
956 1260 112 1.5
1067 1460 .142 1.9
1778 1660 .180 2.4
o

(b) Aluminum: p = 2770 kg/m3 (.101 1bm/in3)

456 360 769 0.184 99.5 .00133
557 560 861 .206 125.0 .00167
622 660 903 .216 138.0 .00185
678 760 937 .224 154.8 .00207
733 860 974 .233 171.3 .00229
739 960 1012 .242 178.8 .00229
844 1060 1045 .250 181.1 .00242
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Table 3. - Effect on Soluction Time of Various GEARB
Options for Jacobian Evaluation for Insulated
Aluminum Cylinder

(a) 0.254 cm (0.1 in.) Aluminum thickness

Jaccbian Unit User Finite Finite
Option Matrix Supplied Difference | Diff (Diag)

(0) (1) (2) (3)
CPU Time* 30,000** 45C 955 10,000%**

(s)
Step Size-
Range - 15-93.4 15.0-93.4 --
Average 0.045 25.0 25.0 0.8
Number of
Jacobian 0 17 17 2600
Evaluations
(b) 2.54 cm (1.0 in.) Aluminum thickness
CPU Time* 1075 402 810 703
(s)

Step Size-
Range 1.6-14.8 13.8-83.2 13.8-83.2 2.2-21.9
Average 2.2 30.8 30.8 8.1
Number of
Jacobian 0 14 14 223
Evaluations

* For CDC CYBER 173 Computer
** Fotimate based on 1540 s for 100 s of History
*** Fstimate based on 1028 s for 200 s of History
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Table 4. - Solution Times for Various Algorithms

In Transient Thermal Analysis of
Insulated Cylinder

Explicit implicit
Euler
Crank-Nicholson/ GEARB
Backward Difference
Time Step | Solution | Time Step |Solution Time Step |Solution
(s) Time (s) (s) Time (s) (s) Time (s)
0.06 12300 5 782 Variable:

10 569 15-93.4 450*
25 507 29-172 263%*

Solution Times on Langley CDC CYBER 173 Computer System

* Specified relative error tolerance 0.001
** Specified relative error tolerance 0.01
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Table 5. - Effect of Modeling on Solution Times* for

Insulated Cylinder Problem

Program
and SPAR (Ref. 2) MITAS
Model (Ref 11)
Model I- Model II- Model ITi- Tumped
3-D metal 2-D metal 2-D metal parameter
and insulation | elements, 3-D | e.ements, 1-D model
Algorithm elements inculation insulation
elenents elemencs
Explicit 12,300 mg 17 92
(time step) (.06) ‘ 2-40. ) (4.6-40, ) (25)
Implicit** 782 170 403 387
(DT=5s)
Implicit** 569 556 260 238
(DT=10s)
Implicit** 482 534 216 166
(DT=17s)
Implicit** 507 Non Non 125
(DT=25s) Convergence Conveargence

* Time in seconds for CDC CYSER 173 Computer
** Crank-=Nicholson and Backward Differences
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Table 6. - Comparison of Algorithms for
Analysis o1’ Titanium Mult:

‘ansient Thermal
TPS

EXPLICIT CRANK-NICHNLSON BACKWARD
DIFFERENCES
Time Step| Solution | Ti.« Step |Solution Time Step} Solution
(s) Time (s) \s) Time (s) (s) Time (s)
0.03 42,000* 1 1811 1 1772
5 675 5 703

* Estimate Based on 8400 ZPU s for 400 s of Temperature Histcry

Solution Times far CDC CYBER 173 Computer
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Insulation thickness 5 cm (2.0 in)
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Thermal Model:

® 2508 grid points

® 1400 structural elements (ID and 2D)

® 2700 insulation elements (3D)
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Figure 10.- Finite element model of shuttle orbiter wing,
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